Developing and Carrying out a Preservation Research Program

Y. Richard Kim, Ph.D., P.E. NC State University

Presented at the Southeast Pavement Preservation Partnership Nashville, Tennessee September 13, 2010

Pavement Preservation Projects at NCSU

Completed

- Optimizing Gradations for Surface Treatments (IWY-2004-04) Aggregate
- Quantifying the Benefits of Imp ved Rollin Chip Seals (HWY-2006-06) Rolling
- Performance Based Surface Treas

Ongoing

- Development of a New Cmp Seal
- Development of a Field Testing System for Asphan Surface Treatments (HWY-2009-01) Field QC Test

esign

\$1.8 million

since 2003

ne in Rituminous

d (HWY-2003-04) – Mix Design

- □ Fog Seal Effectiveness for Bituminous Surface Treatments (HWY-2010-02) Fog Seal
- Extending the Use of Chip Seals to High Volume Roads by Using Polymer-Modified Emulsions and Optimized Construction Procedures (HWY-2011-03) – *High Volume Application*

Research Goals at NCSU

- Develop and introduce more advanced and performance based test and analysis methods to specifications, design, and construction of pavement preservation treatments (PPT)
- Improve the performance of PPT by refining current and developing new materials and construction techniques
- Extend the application of PPT to higher traffic volume roads

Performance Test Methods

Existing Test Methods

Test	Location	Performance Properties
British Pendulum Test	Lab, Field	Skid resistance
Locked Wheel Skid Test	Field	Skid resistance
Sand Circle Test	Lab, Field	Surface texture depth
Vialit Test	Lab, Field	Adhesion between aggregate and emulsion
Flip-Over Test	Lab, Field	Amount of excess aggregates
Sweep Test	Lab	Aggregate retention performance

achieve

Test Methods Developed at NCSU

Test	Location	Performance Properties
MMLS3 Test	Lab	Aggregate retention, Bleeding
Laser Profiling Test	Lab, Field	Surface texture, Aggregate embedment depth
Surface Digital Imaging Test	Lab, Field	Bleeding evaluation
Crosssectional Digital Imaging Test	Lab	Surface texture, Aggregate embedment depth

ac

Third Scale Model Mobile Loading Simulator (MMLS3)

Chip Seal Specimen Fabrication Using ChipSS

NC STATE UNIVERSITY

Field Sampling

MMLS3 Test Preparation

ac

MMLS3 Test Procedure

TP : Transverse Profiling

NC STATE UNIVERSITY

Digital Imaging of Surface

Laser Profiler

Digital Imaging for Embedment Depth Determination

PATTI Test

Findings

Effect of Fine Content and Gradation Granite

Mix Design

achieve

Effect of PME on Curing

Effect of PME at Low Temperature

Rut Depth ₄0℃

Effect of Rolling Pattern

Effect of Delayed Rolling Time

Optimal Rolling Coverages Modified Sand Circle Test (Straight Seal)

achieve!

Bottom Layer Coverage Double Seal (MMLS3)

achiev

Bottom Layer Coverage Triple Seal (MMLS3)

MMLS3 vs. Field

Key Implementation Points

Aggregate

- Importance of uniform gradation (use agg. retained on #8)
- □ Fine content less than 1.5%

Emulsion

- Use of polymer modified emulsion strongly recommended
 - Excellent aggregate retention, bleeding, rutting, and low temperature performance of polymer-modified chip seals
- LCCA shows PME to be cost effective on condition that the service life of the PME is two years longer than that of an unmodified chip seal.

Key Implementation Points – Cont'd

Rolling

- Pneumatic tire roller and combination roller recommended
- Optimal number of rolling coverages of three
- No rolling required for the bottom layer of triple seal
- Recommended Rolling Protocols:
 - Two roller case: Two combination rollers side-by-side
 - Three roller case: Two pneumatic tire rollers side-by-side followed by one combination roller

Acknowledgment

Financial and field support from the North Carolina Department of Transportation

Thank you!

1.51

CONTRACTOR OF